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AN EXPLICIT FINITE-DIFFERENCE SCHEME FOR SOLVING THE /119"
PROBLEMS OF FLOWS PAST BODIES BY THE FINITE DIFFERENCE METHOD

A. N. Minaylos

1. Explicit schemes, in view of their simplicity, are used

widely in solving gas-dynamic-problems. As the number of inde-

pendent variables is increased, the volume of computational work

in calculating one node of a mesh, as well as the number of nodes

as such. This leads to large outlays of computer time, therefore

the problem of setting up an effective finite-difference scheme

becomes essential. This scheme must be simple, while satisfying

the requirements of approximation and stability.

P. D. Lax's well-known scheme is one of the simplest. Its

generalizations, weakening the effect of artificial viscosity by

using parameter a,-ere examined in references /1_/ and /2 7. Let

L stand for this scheme /1 /. Its disadvantages are as follows.

When there is a large coefficient of viscosity (a is close

to zero and the scheme is close to P. D. Lax's scheme), the

solution is rapidly ascertained, but contains a large error

caused by the presence of viscous terms; at this coefficient of

viscosity (a is close to unity) the solution becomes unstable.

Here we consider the linear relation between steps of the network

T and h in terms of time and spatial variables, since given the

function T7 h2 yielding a stable computation when a = 1, the

step in time is too small and the network is not economically

advantageous. Computation in reference /1 / with step T - h

and a = 1 was stable for a mesh with a small number of cells

(6 x 2) and with the stabilizing influence of a shock wave.

Another L - W scheme examined in /1 / belongs to the class

investigated by P. D. Lax and B. Vendrov. It was used in the

* Numbers in the margin indicate pagination in the foreign text.
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study /3 / and gives more exact results than does scheme L. Fluc-

tuations in the shock wave front during the finding of the solution

by this scheme are small in amplitude, therefore the field is less

perturbed in the computational region and-the solution-finding

process proceeds more rapidly. However, when parameters are

computed at each node of the mesh under the scheme, considerably

more operations are required than by scheme L, since the second

derivatives in time are determined by differentiation of the

system of equations with respect to all independent variables.

The cumbersomeness of the expressions intensifies when spatial

flows are calculated.

This article deals with selecting a difference scheme such

that, by-preserving the advantages of the L - -W scheme, would be

less cumbersome, and the number of arithmetical operations at

each step in it would be much fewer.

2. The proposed scheme N is a simplified variant of the

scheme used in /T 7. The scheme in /V 7 -- let us call it R --

is a modification of R. D. Richtmyer's scheme. This is a two-

step scheme of the predictor-corrector type, of second-order

accuracy.

Scheme N differs from cheme R in that the spatial derivative /120

at the second corrector-step, with intermediate layer, is taken

only along one direction, while the derivatives of the old layer

are used in the other.

Let us write out scheme N for the case of two spatial

variables s and n. We represent the system of gas-dynamic

equations as

where U is the vector of the unknown functions, F is the operator

of the right-hand sides of the system, and Fh is the difference

operator approximating the operator F with approximation order 2.

As in scheme R, the calculation proceeds in two stages.
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First one calculates the values of the unknown functions at

an \auxiliary layer coinciding with the layer t + T. In contrast

to the scheme R, these values are determined only at two points

lying on the same coordinate line with the central point (i, j).

Thus, the scheme is anisotropic and so it loses its commonality

in the sense that its application necessitates selecting a specific

direction, that is, some knowledge of the solution of the problem.

In the problem of flow past a blunt body the points in the inter-

mediate layer are taken along the coordinate line s = const, that

is, along some arckdirected from the body to the shock wave.,; It

is precisely in this direction, as experience shows, that the

main fluctuations in the solution occur in the process of arriving

at the solution. The correctness of this approach is confirmed

by practical calculations. The values at the auxiliary points

(i, j + 1/2) and i, j - 1/2) are determined by the scheme L with

ax= 0:

U Ui. + l- t .

-j. -4 hs

(2)

-1. u. ,, - U. ,
h,

U = u,. + -- Fh (U U:. U ,. i- I2

The subscript t is omitted in the expressions.

Formulas for the point (i, j + 1/2) were obtained from Eqs.

(2) by adding unity to the subscript j.

Then one determines the values of Fh at the point (i, j) in

the "old" layer t and at the intermediate layer t + T.

Let us use the following formula to determine the va'lues in

the new layer t + 7:



.=' u3. i- u3 , U, u ),. j + _ ?)h (U. U, U), ; (3)

here

Ui. i +. 2

2 hS

U I1, j+1 i. i-1
2 
hn

In scheme L we must use the/ block of calculation of /121

operator Fh three times (with allowance for the values of Ui,ji/2

retained from the calculation of the preceding point (i, j - 1)).

In the variant with p = 0, we must use the block for calculating,

operator Fh twice at one point.

Below is given a comparative table of the amount of computa-

tional work at one node of the mesh for different schemes (the

number of operations for a single use of the Fh operator calcula-

tion block is taken as unity):

TABLE 1

L L-- R N

Two spatial derivatives 6-8 45 2-3

Three spatial derivatives' 1 12-14 6-7 2-3

3. Analysis of the simplified system shows that when T - h

the scheme N is unstable. The instability is caused by the terms



determining the derivatives with respect to the direction s in

layer t.. To stabilize the solution, let us use the smoothing

process equivalent to introducing artificial viscosity. We note

that at the predictor step the method now contains terms with

artificial viscosity in P. D. Lax's scheme.

Let us look at the effect of different laws of smoothing

on the stability of the scheme L for a simple model equation:

l+ou,=O (a>o). ( 4)

Let us represent the scheme as u m+-um,)-

The results of analysis by the spectral method are given in

Table 2:

TABLE 2

moothd value of Stability
SSmoothed value of u conditions

0 h

S-y (Um+t+ + Um-it a "

3 3 (u+l -I- 4 + ",_-I) 3 h

4 3
5 10 (u,,+ + um + uM ) U- -a h

Um . . Unstable

The limiting values of T decrease with weakening of smoothing.

The example in the second row of Table 2 corresponds to

smoothing by the least-squares method, with the linear smoothing

polynomial constructed at three nodes being specified. We can



see without difficulty that all these linear.forms of smoothing

retain values lying along a straight line and convert the second-

order curve into a curve of second order with a shift proportional

to h2

Actually, the formula /122

(u+1 + urn+ u = UM + I 1(um+, - Um) + (Um-, -ud)

converts line mh into itself, and the curve m2h 2 into m 2h 2 + h2/3.

The presence of this shift when the form of the shock wave /

being smoothed (close to a second-order curve) leads to a large

distortion of results, therefore smoothing based on interpolation

employing a quadratic polynomial was used. In this case the

least-squares method, for the four nodes used, yields the smoothing

formula given below for Eq. (5):

3
1 -- , 3(U -U)u. /

The scheme is stable when T - 0.288 h/a. Smoothing of this

type in fact was used to increase the stability of scheme N. In

the case of three spatial variables smoothing is conducted

separately at each meridional half-plane by the formula

- 3
u., U= ui- -j I$ i [u , - u 1.,- - 3 (u. + - ui. j) 4

- (1 - y) [u . / - ut. y - 3 (s+,. 1 - u;. ) 1 .

where 0 < X < 1.

Smoothing is used not at each step 7, but after a certain

number of steps k > 1. Here the stability condition becomes more'

rigorous (when k = 2, by-scheme (5) T < (0.251l)h).

The values of k and X are selected empirically for the

individual variants. Usually k = 10-20, X = 0.5.

4. Scheme N was used in constructing, jointly with A. P.

Bazzhin and S. V. Pirogova, a pfogram for computing flow of a



supersonic stream past a blunt body /5 7. The parameters at the

boundaries were calculated by the method of characteristics close

to the scheme of D. Moretty /3_/. The internal nodes of the

solution domain were computed under scheme N.

A large series of calculations of two-dimensional flows in

an ideal gas were made under this program (with constant ratio of

specific heat capacities), as well as in equilibrium-dissociating

air.. Flow past-spheres, ellipsoids of rotation of right and

elliptical cylinders, and bodies of revolution in which the

equation of the generatrix was in the form of a power monomial

was calculated.

Experience in use of the program /5 7 - /7_/ confirmed that

it is effective with satisfactory accuracy (errors of the order

of 2-4 percent). Below several results are presented.

Fig. 1 shows the velocity at the surface of ellipsoids of

revolution with ratio of axes a/b varying from zero (flat face)

to two. The velocity is given with respect to the limiting

velocity and is plotted as a function of length of ellipsoid arc;

the radius of the middle of the ellipsoid (semiaxis b) is taken

as the unit of linear dimension. The curve in the case a = 0 is

obtained by the method of integral relations.

In Fig. 2 a comparison is made of the patterns of shock waves,r

streamlines, and lines of constant values of M number for flow

past elliptical cylinders with a ratio of ellipse axes equal to

unity (right cylinder) and 1.5. The results correspond to the

values Kj = 1.4 and M = 1.5. Calculation by the finite-difference

method for small supersonic M numbers is difficult owing to the

poor ascertaining of the solution (perturbations in the flow

field are weakened). In addition, we know that the accuracy of

the results of calculating plane flows is lower than for axi-

symmetric flows, owing to the greater distances from the body

surface to the shock wave. Therefore Fig. 2 illustrates the

results of "difficult" calculations. The deviation of the



values of Bernoulli's integral from the exact value does not

exceed 1.5 percent for these results. However, for small M

numbers this integral is usually computed to high accuracy, and

the accuracy of its computation is not a sufficient condition for

the accuracy of the results. Errors in the calculation do not

exceed 3 percent, while the velocity of the shock wave'at the end

of the computation, that is, the degree of "arrival" at the variant

is not more than 0.02 V
max

er-.-- - - f 7 *25 *=44'M =1OF. /123

l- ' - 7 - JiO 

J,

. _.

--I-J

I d I-

o t r eut o
Fig. 1.

It is precisely the criterion i i

of accuracy for the wave velocity

that requires extended computation Fig. 2.

at low supersonic velocities, by

increasing the number of steps four-five times with respect to

the time variable. In the reference /L7, the results of which

are shown in Fig. 2 with a dashed line, evidently this criterion

was not considered. The flow at M'. = 1.5 was not established,

and the results contain large errors. For comparison, it is

sufficient to examine the angle LO between the streamline and
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! 5s z.

Fig. 3

the sonic line at a point on 4

the shock wave (see Fig. 2). -4s

The exact value obtained Fig. 4.

analytically is L A 960

the results of this present study is o = 890; and the results of

reference / -7is approximately 600. To enhance the accuracy of

w obtained in this studyrequires more prolonged computation and

possibly finer subdividion of the computational domain in the

direction normal to the body.

V. I. Blagosklonov calculated flow past bodies of revolution /124

with generatrix in the form of a power monomial r = zm (1/2 < m < 1).

In Fig. 3 is shown the flow field for the variant with values

m = 0.65, KI = 1.4, and M. = 8. The length of the lines M = const

is typically large compared with blunter bodies.

Fig. 4 shows the form of a shock wave, isomach, and isochof

for a body of revolution whose generatrix is given by the formula

r - , btg c +.
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Here

R,

b .z I
2  a

I - - bI

2 2

Calculations of flow for bodies of this form were made by

A. P. Kosykh. In these calculations use was made of the nonuniform

subdivision of the computational domain in the physical plane in

the direction along the generatrix of the body (along the x axis).

Corresponding to the variant shown in Fig. 4 are the following

values of the parameters: for body shape -- R i 
= 0.6, R 2 = 0.2,

a = 600, n = 100, and z = 0.5045; and for incident flow -- K =1.4

andM = 6.
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